Monday, September 30, 2019

Hudson River: a Detailed and Comprehensive Geological History

Contents Introduction†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. 2 Hudson River Formation†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. 5 Hudson Canyon†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã ¢â‚¬ ¦Ã¢â‚¬ ¦12 Glacial History†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. 14 Conclusion†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦17 Bibliography†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚ ¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦18 Maps & Diagrams†¦.. †¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. 19 Hudson Canyon†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦.. 19 Geological Processes†¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦Ã¢â‚¬ ¦. 2 1|Page Introduction In 1872, a naturalist and surveyor by the name of Verplanck Colvin found the source of the Hudson River. It is a small pond on the south western slope of Mt. Marcy, the highest peak in the Adirondacks, called Lake Tear of the Clouds. So little is Lake Tear of the Clouds that if no water was to feed it for seven days it would be reduced to just an empty basin. Nevertheless, the Hudson starts right in its waters. One could say the Hudson River is divided into two distinct sections differentiated by geology and appearance.The first section winds its way through the Adirondack Mountains spanning 166 miles from Lake Tear of the Clouds to the Federal Dam in Troy. This section is un-navigable by boat and in some places somewhat rapid. The second section, which is quite different from the first, starts at the Federal Dam and runs for 149 miles through the â€Å"rolling hills† all the way to the Narrows between Brooklyn and Staten Island. Back up north at Lak e Tear of the Clouds is fed by natural springs and runoff from the sheer steepness of Mt. Marcy and other streams winding down from the high peaks of the Adirondacks.Throughout the whole Adirondack mountain range, the watershed drains and dumps runoff from 3,400 foot peaks into the lowlands less than 410 feet above sea level. From Lake Tear of the Clouds [in the space of a mile] the river drops 1,000 feet down a deep trench to join the Opalescent River1. A bit more southward, the Mohawk River drains much of the runoff from central New York into the Hudson. In fact, over half of the Hudson Rivers water volume comes from the Mohawk, and without it, the Hudson would be practically non-existent.Further south of Albany tributaries flow westward to the Hudson from the Taconic Mountains and eastward from the Catskills. Still further south the tributaries for the Hudson begin to appear rectangular, almost following the trend of the faults and 1 The Opalescent River is not a separate river f rom the Hudson but merely a section named by old Native American tribes. 2|Page ridges that run northeast to southwest of the river while other tributaries join at right angles to the faults along the joint planes.At this point in its path, the river begins to occupy its original bedrock gorge formed millions of years ago, flowing over rock ledge rapids and the coarse cobble point bars2 that are very common from Mt. Marcy to Glens Falls, until it is partially blocked by mountains. It is here that the river makes a sharp turn to the east and flows through the Luzerne Mountain gorge in western New York and then emerges quickly onto glacial lake sediments deposited in the Pliocene Glaciation and forms a very broad, almost meandering path on the lowlands (supported by shale) for the nearly 130 miles to Newburgh.South of Newburgh the river cuts laterally through the hard crystalline rocks of the Hudson Highlands, shifting back and forth in its valley (almost like a cradle) until it emerg es from the highlands and starts to exhibit fjord like characteristics within the towering rock walls around it. The river’s course then slightly curves in front of the Palisades escarpment3, which towers more than 328 feet above the water’s surface. At the Narrows the Hudson breaches its final barrier, the terminal moraine4 of the last glaciation (more on this in the Glacial History section) before it reaches the Atlantic Ocean.At the Atlantic (although tidal) the Hudson behaves as any other river would and deposits its bed load (sediments carried by the river) and some of the fine-grained suspended load (basically fine grained sand and dirt floating in the water) into the form of sandbars. Over millions of years, these have contributed to building up many islands including Staten Island, Hoffman Island, Swinburne Island and many others. The very low slope of the Hudson plays a great role in the amount of discharge and island buildup, too, as it only rises about 0. 4 inches per mile for the last 150 miles of the rivers path. To give some perspective, the Mississippi river rises approximately 6 inches per mile during its course, and discharges about 700 million tons of sediment per year into the Gulf of Mexico 2 Coarse cobble point bars are essentially pointed cobble that has been piled into bar like formations. These formations are generally formed when sediments carrying cobble leave it behind. 3 Ground formed into a steep slope as part of fortification. â€Å"Moraine† is a word used to describe the earth, stones and debris a glacier deposits. â€Å"Terminal† describes that these items were deposited where the glaciers maximum extent was, in this case Long Island. 3|Page and its mouth is approximately a ? -mile wide. The Hudson River discharges about 175 million tons of sediment per year and its mouth is about the same width at a ? mile. With a 2 inch increase in slope geologists predict the discharge rate of the Hudson would spik e up to about 450 million tons per year and the mouth of it would close up to about 250’ wide.This would place Manhattan underwater and greatly limit boat traffic as well as make Long Island more of a true island separated from land by at least 3 miles or so of water5. And so, the geography of the Hudson River today ends here in Manhattan, but the geology of what lies underneath is much more important. Continue reading if you must, and dwell into a mystery of time and a lot of pushing and pulling. 5 Do not worry about this happening now though because the rivers overall slope has not changed more than a centimeter in the last couple thousand years and shows no signs of speeding up. 4|Page Hudson River FormationThe Geology of the Hudson River is complex. Billions of years of folding, pushing, pulling, separating, and moving have formed, deformed and reformed the Hudson River valley into what it is today, a â€Å"giant palimpsest6, a great parchment on which the hand of nature has written and rewritten her bold signature for more than a billion years†7. In the next section, I am going to attempt to condense over a billion years worth of Geologic History into less than ten pages. Despite complex knowledge and strange words it is a simple story of time and rocks, moving and changing: the formation of the Hudson River and its valley.The Hudson’s geological â€Å"personality† very much reflects its structure and the changes made on it, underneath it and all around it from the Pleistocene glaciations8 . The bedrock foundation of the Hudson was established in the space of three oregany’s (mountain building periods) beginning over a billion years ago. These mountain-building episodes re-triggered long intervals of underground erosion and periodic submersion by the epicontinental seas (or oceans) to help start forming the Hudson River Valley. At a point much later in this story, glacial erosion reshaped the landscape of the HRV into wh at it appears as today.The first major mountain building episode, the Grenville Orogeny began about 1. 2 billion years ago. It was one of the biggest Oregany’s and affected a broad region along the coast of what was Ancient North America, from the northeast waters of Canada to northwestern Mexico. The mountains created by the Grenville Orogeny were most likely as tall as or taller than the Himalayas and were driven to these heights by a collision of Laurentia (Ancient N. America) and Gondwana (Africa) in which Gondwana overrode Laurentia. The deep burial of Laurentia resulted in the first 7 Written upon, or engraved on more than once. The Hudson: A History, Chapter 1: The River and the Land, pg. 10 8 A period of ice buildup to form glaciers, or the act of glaciation. 5|Page metamorphism, partial melting of rock and the separation of the light and dark minerals found in the Adirondack gneisses9. Many hundred thousand of years later in the Proterozoic period as the continents p eriodically moved, basaltic volcanic rocks merged into the mountains cutting the anorthosites10 and gneisses laterally across.These gneisses are around one billion years old, while the Highland gneisses may be a bit older. The Fordham gneisses are the youngest and can be dated to just under a billion years old. Over the millions of years, long episodes of erosion on the Grenville Mountains and constant lifting of the crust have brought it to the surface. Later in the Proterozoic period, erosion of this crust formed and provided a thick source of sedimentary deposits that partially submerged the upland area of coastal Laurentia (presently this is the area south of and parallel to the Appalachian Mountains).These deposits are now found mostly in the Appalachians, with almost all of them have been removed from the Hudson valley, leaving hard rock and clay for the Hudson River to rest on. In the early Paleozoic, the sand and gravel that was eroded from the mountains during the Proterozo ic period became basal sandstone and conglomerate11, which is more commonly known as the Potsdam Sandstone in northern NY and the Lower Quartzite that is prized throughout the Hudson Highlands.As the Epicontinental sea inundated this (once) mountainous region the sandstone and Lower Quartzite were buried under a thick cover of marine limestone and shale, which was laid down in an elongated trough that formed on the continental shelf where mountains had once been. The limestone was mostly deposited on the shallow edges of the trough while the shale solidified from the mud carried into the deeper seaward part of the trough. The solidified shale then created the bedrock between Glens Falls and the Highlands. 9Coarse, grained metamorphic rock composed of quartz, feldspar and mica. An igneous rock made up largely of soda-lime feldspar. 11 Rock composed of rounded fragments of various rocks cemented together in a mass of hardened clay and sand, like a composite. 10 6|Page In the Late Camb rian period,12 Laurentia once again collided, but this time with the ancestral core of Europe, Baltica and a large fragment of what is thought to be the continental crust known as Avalonia. This started the mountain building period known as the Taconic Orogeny, which lasted throughout the Ordovician Period.The Taconic Orogeny also resulted in the new supercontinent Laurasia. While much of the activity involving this collision took place well to the east it also affected the HRV. Island arc volcanic structures such as the Cortlandt Complex have been found in the Hudson Highlands. To the North and West in the mid-Hudson Valley, the sedimentary rocks that were deposited in the early Paleozoic Period were folded (with the trend of the folds and faults already in place) parallel to the southwest to northeast facing the Appalachians.These folds and faults eventually became some of the paths of the HRV tributaries. Closer to the coast than these faults, thin sheets of rock were pushed seve ral dozen miles west. This event is known as the Taconic Thrust and took place in the area where today exists the Taconic parkway. Because of this event, the fine-grained shale that was there was crumpled (as if we crumple paper) and pushed into the narrow channel of water west of the mountains near present day Croton. Over many years thereafter blocks of limestone into the channel and were merged into a jumble of shale clumps.Today millions of years later the river flows past the western edge of the channel and then cuts into the disorganized deposits of shale as it continues south. As we travel through time, sandstone, limestone, shale and Proterozoic bedrock from the Hudson Highlands became buried as Laurentia’s coastal margin was subducted13 close to where it and Europe’s plates met. The rocks that met each other from each plate partially melted and transformed into more gneiss, marble and schist14, which was then folded and moved once more to be in alignment 12 00 million years ago Subduction can be described as the action or process in plate tectonics of the edge of one crustal plate descending below the edge of another, almost like a controlled earthquake. 14 Schist is a metamorphic crystalline rock that has a closely foliated structure and can be split along approximately parallel planes. 13 7|Page with the Appalachians. This set the stage for the modern day continental shelf to form, although it would take millions of more years for it to happen. After the two plates of Europe and Laurentia collided, there was a sort of lull in activity around this area.This allowed streams in the lowlands to follow the valleys formed along the fault lines, or on the softer marble layers around Manhattan. The oceanic crust borders and the rocks around NYC and to the east more or less contained the streams around Manhattan, while the streams in the lowlands and around our area were free to roam and spread out. After the Taconic Orogeny ended, a long inter val of erosion began stripping away the excess crust as the â€Å"new† continent (modern North America, or Laurasia) was very slowly lifted by the compression of the plates.As the upland area was eroded away the epicontinental sea gradually filled the Hudson Valley region from the low lying land of the coastal margin all the way west nearly three-quarters of the way to Pittsburgh. Later during the Silurian and into the early Devonian period shallow seas covered the area and left behind calcium carbonate sediments making the soil very rich. At around the same time rivers formed and flowed from the uplands carrying major amounts of sediment west to the sea to form marine sandstone.While the marine sandstone was being formed, at the shoreline a large delta15 formed over the junk that the marine sandstone left behind. By the midDevonian period, an alluvial plain16 had reached across much the western Catskill region and the shoreline had shifted slightly west about 15 miles or so. At this time, thousands and thousands of feet of sediment from mid-Paleozoic times were piled up over the Hudson Valley and continental red sandstone (one reason why there is so much sandstone around here) from farther east inland were incorporated with the gray marine sandstone from the west closer to the coast.The force of all this happening at once overturned the folds that were in place to the northwest (near present day Schunemunk Mountain along the NYS thruway near Highland Mills) exposing the limestone that 15 A Delta is a triangular alluvial plain, usually where a rivers mouth is. A level or gently sloping flat or a slightly undulating land surface resulting from extensive deposition of alluvial materials by running water 16 8|Page was buried slightly underneath the sediment that had accumulated over the years. This marked the end of the Devonian Period, and the start of the Acadian Orogeny.The Acadian Orogeny began as the North American plates started to compress again and lift up the eastern mountain ranges around New England and western Pennsylvania. This Orogeny was also partially caused and linked to the collision that happened between Laurentia and Gondwana that created Laurasia, and most likely, if this Orogeny had not happened the Hudson River would be a completely different river, and possibly would be connected to the Mississippi River. As the plates began to compress each other again they created volcanic arcs and granite intrusions somewhat east of the Hudson Valley near the coast.Around this time in our little history story the seas started to retreat from the east to west and started to expose the incredibly thick layer of sediment and rocks from the Acadian Mountains all the way to the Catskills. The final compressions dating back to the Paleozoic era continents and the Alleghenian Orogeny now ended and the earth came together to form Pangaea. Because of all this land being pushed up, the Epicontinental Sea retreated from the Catskills to the Poconos in Pennsylvania leaving much of New York and New England dry once again.Now above sea level the strata from the Devonian period became subject to erosion for 250 million years. At some point during this time, the drainage patterns shifted and aligned the ancient Hudson River along a NorthSouth line much like it is today. This was the biggest directional change the Hudson ever underwent. As the strata and sediment were worn away from this new path of drainage, it revealed the granite, marble and schist underneath which became the building materials for our modern world.With the Taconic Mountains now more to the east and the Catskill Mountains to the west the Hudson worked its way down deep into the sediment it was on top of leaving behind a hard bedrock base nearly 5,000 feet deep in places17. This created a solid foundation and left the Hudson with a relatively stable path 17 Over the last several million years, and an Ice age this has all been filled in and now the H udson has an average depth of 32’. 9|Page that has not changed tremendously since. The breakup of Pangaea followed soon thereafter and the coastline of North America began to resemble what it is now.At the same time, the Hudson was filling its banks; basaltic magmas were merged along the fault lines and into the bedrock forming the Palisades Sill18. After that, compression and buildup of sediment and rock slowly built the Palisades up. Today the part of the Palisades that stands is almost like a canyon above the Newark Basin. The â€Å"tabular†19 Palisades still slope to the west, and the eastern edge forms the escarpment, or â€Å"palisade†20 21 of rock joined vertically that we recognize today from miles around New York and from the air as we fly to new places and heights.But to learn how, we must travel to another time in this story, the Mesozoic Period. Some time in the late Mesozoic period, igneous rock deposits were moved yet again and placed along a line going Northwest to southwest from Canada to New England lifting the mountains in its path by several hundred feet and in some cases over 1,000 feet. Because, as you might infer, rock takes up space, and as it lifted up the mountains and separated them, it started to separate North America’s continental plate away from the mid-ocean ridge22 and over a very hot area above the earth’s layer of magma near where the present day Appalachians exist.This caused what geologists think was a shot of magma that melted through that particular part of the plate (which was quite thinner than today) and uplifted the Northern part of the Appalachians. This, in turn reactivated erosion and brought the domed like anorthosites to the surface which is most likely the reason that the Appalachian Mountains are not scraggly and sharp like the Alps, but more rolling with large boulders and open expanses of rock. The Catskills and Adirondacks also experienced lifting, but in a much smaller amou nt. Almost at the same time as all this uplifting was happening, a 18 19Think of this as the palisades foundation. L. Sirkin & H. Bokuniewics – The Hudson River Valley: Geological History, Landforms, and Resources pg. 17. 20 L. Sirkin & H. Bokuniewics – The Hudson River Valley: Geological History, Landforms, and Resources page 17 21 Palisade literally means â€Å"a fence of stakes for defense† The Palisades are called the Palisades by Native American Tribes because they helped as defense for them from other tribes. 22 The mid-ocean ridge is a undersea mountain ridge that is where the North American and European plate meet. While this ridge has hardly ever changed, the plates do move.In this case it is the biggest moves it has ever made. 10 | P a g e hole began to form from sinkholes on the western slope of Mt. Marcy and soon filled with water. This was Lake Tear of the Clouds. After Lake Tear of the Clouds formed and filled with water, the Newark basin reached i ts fullest capacity of water and the Hudson began to â€Å"drive† into its flood plain and carve out its gorge in the gneisses of the Highlands of southern New York. This area is now mostly between West Point and Hastings on Hudson, but it continues as a much smaller â€Å"weaker† gorge almost down to Fort Lee.The Hudson was now a true river, but would still undergo massive changes over the next several million years. At this time in the Hudson River’s history, Long Island did not exist as what it does today. It was a tiny, almost alcove piece of land that was in no way an island. In addition to that, there was no opening to the Atlantic for the Hudson. At the place where the Hudson empties into the Atlantic at the Narrows was a big solid mass of land. The Hudson by definition was a lake. So, as the Hudson filled up and he water put immense pressure on the piece of landmass blocking it from the Atlantic it began to carve out and widen an outlet. It took only a f ew hundred years23 for the Hudson to make it to the Atlantic, bringing with it thousands upon thousands of tons of sediment that had piled up in the Newark Basin. This created the new continental shelf to form the coastal â€Å"plain† we see today that stretches for about a hundred miles out to sea from New York, only in that time and age it stretched for nearly 425 miles, nearly halfway to Bermuda.The Hudson now had an outlet, and the waters started moving south digging, and bringing sediment to the mouth building up Long Island a little bit24, as well as separating it from the mainland with what is now the East River. The sea levels around North America also dropped a few centimeters as the waters made their way up the Hudson forming the Hudson River estuary. This raised the Hudson’s waters by a few centimeters and created its almost permanent banks that have 23This is an extremely short time in geologic history and greatly shows how much the pressure was on the land mass blocking the Hudson from the Atlantic. 24 Although Long Island did get built up at this time, the majority of it was built up during the last ice age nearly 20,000 years ago. 11 | P a g e not changed very much since. Because the sea levels were much lower in that time period the Hudson also began its excavation of the Hudson Canyon with the help of the naturally occurring currents (more on this in the Hudson Canyon section) and more than doubled its length to nearly 895 miles (about 1,440km) long.After nearly 500 million years the Hudson rivers formation had ended and all that was left to change it was its own water wearing away at its bottom and a glaciation that would come in a few million years. Hudson Canyon The Hudson Canyon is possibly the biggest mystery of the Hudson River. How did it form? When exactly did it form? Why did it form? These are all questions geologists and hydrologists ask when looking at it. Most people in fact have never heard of it. To them the Hudson is a river that starts in the Adirondacks and ends at the narrows.To the few that know of the Hudson Canyon, the Hudson River starts in the Adirondacks and ends nearly 925 miles south halfway to Bermuda right after falling over a half mile down a [now] underwater canyon and then fanning out and spreading to the Atlantic Ocean. There, even though underwater it still carries small amounts of the Hudson’s freshwater (out to sea), and most geologists still consider it a part of the Hudson. This makes the true length of the river from Lake Tear of the Clouds to the end of the Hudson Canyon 922 miles, more than double of what we consider the â€Å"Hudson†.As explained in the last section (Hudson River Formation) in the late Mesozoic Period the Hudson River broke the land barrier that held it from emptying into the Atlantic. When it broke the barrier it began to carve a new path out to sea towards Bermuda. At some point, it reached the Continental Shelf and dug into it creati ng a canyon that eventually connected the shelf to the ocean basin, which is about 1. 5-2. 5 miles deep. Technically the canyon begins as a natural channel many miles wide at the mouth of the Hudson in a depression about 12 feet deep in the rivers bed. It 12 | P a g e ontinues then through the Hudson channel and under the Ambrose light25. Soon after the Ambrose light, it reaches the shelf and goes through the real canyon part of it that is called the Hudson Canyon proper. The Hudson Canyon proper is located about 100 miles east of Battery Park City and has walls almost ? mile in height, which can be compared to the Grand Canyon whose cliffs are about 1-1/8 mile deep. The Hudson Canyon is the largest â€Å"submarine† canyon in the United States, partially due to the currents that pass over, and carrying away sediment and rock, thus carving it deeper and deeper.Over the past 30 years since it was discovered, tracking equipment has logged a nearly 12-inch change in its depth and width making the Hudson Canyon also the fastest growing canyon in the Atlantic Ocean. At the same time it is growing wider and deeper, it is also getting closer to the magma underneath and behind the continental shelf. In simple terms, one day in the next couple hundred or thousand years it will break through and magma will come out creating a new island, possibly connecting the East Coast of the United States with a land bridge that extends more than halfway to Bermuda.Many tributaries around the canyon would be raised by the magma, creating a new network of rivers and streams on the land bridge that could host many kinds of wildlife as well as marsh like environments. In addition to this, the Hudson Canyon has large stores of methane hydrates which according to scientists is a very promising clean burning natural energy source, and could help reduce oil consumption. It is a Canyon of great importance to the Hudson River, and also a big clue into the Glacial history surrounding th e HRV. 25The Ambrose light is the site of a Light House that ships going into the New York Harbor and other harbors in the area use for navigation purposes. 13 | P a g e Glacial History The Glacial History of the Hudson River is probably the one of the most important geological event that happened in the Hudson Valley in the last 50,000 years. Evidence points mostly to the Pleistocene Glaciation, which was the last and only Glaciation to reach this far south into the United States for the change that happened on the Hudson River since it was originally formed.The topography of the Hudson Valley enabled the ice from the Pleistocene Glaciation to form a Lobate Ice margin26 about 50 miles north what is now Manhattan long island. Around 22,000 years ago the Ice over the Catskills and Taconic uplands thinned, while it thickened in the Hudson Valley and expanded southward closer to the mouth of the Hudson. Scientists today doing Pollen analysis and radiocarbon dating have found that the c limate back then right before, and as the last Ice age started was much warmer than today. As one can expect, warmer conditions meant more plants, and the sea level was much higher than today27.When the climate cooled and the Glaciers expanded south all these trees, plants and debris were ground down and immense pressure pushed them into the ground, almost dissolving them into dirt. This not 26 Lobate means resembling of a lobe. In this context it is used to describe the shape of the edge of the Glacier, or its maximum extent which was a short of lobe shape. 27 Evidence shows that the waters might have been as far north Albany. 14 | P a g e only made the area much more barren, but also flattened the Adirondacks, and Hudson Highlands down many thousands of feet.The glacier continued to expand 26,000 years ago and merged with smaller glaciers up north to form one big glacier known as the â€Å"Laurentide Glacier†28. This Glacier covered all of Ontario, the St. Lawrence River, M anitoba, Nunavut, and parts of Quebec, as well as the Great lakes down to Chicago where it almost ran parallel to the US/Canada border before dipping slightly down towards present day Manhattan and following the coast of the US up north. At the height of this glaciers advance the ice most likely was more than 1,000 feet thick over the tops of the Appalachians (if you do the math this means that it was over 1. miles deep) meaning immense pressure was being placed on everything flattening the landscape. This also meant that because there was so much pressure, and the water of the Hudson never froze 100%29 the Hudson’s waters literally pushed the earth and carved the floor of the Hudson to a depth similar that of what it was before it broke its barrier at the Narrows. 30 The dirt being compressed turned back into soft metamorphic rock, and created marble where none existed near Warrensburg.A few miles south at Glens Falls the Ice naturally deepened because of the drop in elevati on and gained momentum31 carving out the fjord previously made even bigger, which created Storm King, Beacon and Bear Mountain. All this rock carved out of the Fjord eventually made its way south where it was dumped over Manhattan and Long Island, somewhat accounting for all the Limestone and shale and schist around that area. At this time, the Hudson Canyon was also carved out by the glacial ice melt flowing through it with rocks and debris and became much deeper and wider.When the Laurentide glacier made it to the Narrows its front stopped moving forward, but its back kept on moving forward compressing everything together (Like an accordion) and melting a lot of the ice. Why this happened is not really known by Scientists because glaciers can float. This area became the Glaciers â€Å"dumpster† and the Terminal Moraine was officially formed. Long Island was 28 29 Yes, it was named after Laurentia, ancient North America. Meaning the whole time there was a glacier over this a rea, the Hudson was still flowing but now mostly with ice melt from the glacier itself. 0 Of course this all filled back in as the glacier melted. 31 A glacier is always moving, whether it is 1 foot a year or 1 inch a year. 15 | P a g e built up and out to its current state and the Moraine extended west into New Jersey and Pennsylvania, carrying with it glacial melt creating many of the glacial lakes in that area such as Lake Hackensack, Glacial Lake Hudson and many others. Clay also being carried was dumped all over the region (mostly on the current Rockland County side) and created a nice thick, slippery layer on which the glacier to slide on.This process of dumping and melting continued for many thousand years and started the recession of Laurentide. In a 2,000 year period from 26,000 years ago to 24,000 years ago Laurentide melted and receded so that all of Long Island, Staten Island, New Jersey, Pennsylvania and pretty much everything south of present day Hartford Connecticut w as ice free. The Ice continued to melt over the next 4,000 years until everything south of Glens Falls was free of ice. The ground, sort of like a sponge when you fill it with water, rose a few meters and went nearly back to its state before the glacier.At Glens falls The glacier stopped for a thousand or so years and slowly melted providing the Hudson valley with a constant stream of fresh glacial water. Around 19,000 years ago the glacier started to recede from Glens Falls and the melt water created Glacial Lake Albany which continued to grow throughout the next several thousand years as Laurentide receded. At 15,500 years the Climate suddenly got cold and the glacier advanced back south to near Poughkeepsie and created the Wallkill, Poughkeepsie, Red hook, Hyde Park ad Pine Plains moraine.As suddenly as the Climate got cold, it got warm again and by 13,000 years the glacier was receded north of present day Quebec City. When the climate got warmer again the sea levels rose, this t ime to near Albany, and caused Glacial Lake Albany to drain. For the next couple thousand years as the climate cooled, the Hudson was tidal up to Poughkeepsie and as the Sea retreated. This brought the tides down with it to near Peekskill where it stayed for many thousands of years until around 6,000 years ago it began to go north to nearly 20 miles past Troy32 by 2,000 years ago the sea was at its present place, and the Hudson was in its present 2 The exception to this is the Troy Dam; if it wasn’t built the Hudson would still be tidal nearly 20 miles north of it. 16 | P a g e state. Long Island was as it is now, and the coast was pretty much the same besides what natural erosion as taken away since then. This was the final Glaciation, and the final change to the Hudson River. After nearly 1. 2 billion years, several different Oregany’s, Hundreds of changes, 4 different climate changes and a whole lot of pushing and pulling and moving the Hudson River was finished bei ng formed and all it needed was for Henry Hudson to come sailing to name it†¦. ConclusionIf you have gotten this far along into this history story then you will know that the Hudson River didn’t just appear, it doesn’t formally end at the Narrows between Brooklyn and Staten island and it isn’t just a river. It is the culmination of 1. 2 billion years (and counting) of the earth doing its shtick33 on the world we live on. It took 7 different continents to pull this off, and it worked out beautifully creating a river of outmost importance to our lives, lives before us, and lives to come. I like most of you out there reading this paper did not know a thing about the Geology of the Hudson River when I started this project.It probably took me a proportionate amount of time to learn this as it did to create the whole Hudson. Now, after early 3 months of reading words I don’t know, looking at diagrams I can’t even understand and writing technical ter ms that I can’t pronounce I have learned what it took, and takes to create the Hudson. Like they say, it takes a village to raise a child; it took a whole world and 1. 2 billion years to create this river, a river of small nature compared to others around us such as the Nile, or Amazon which are nearly 5 times the length of the Hudson and took a very disproportionate amount of time to create. 3 â€Å"Piece†, or â€Å"thing† in Yiddish 17 | P a g e So, as I leave you with this 20 page Essay, think about the next time you go to the Hudson and pick up a handful of sand, and know, just know that that handful of sand has been moved around for 1. 2 billion years to end up at your feet. Bibliography L. Sirkin & H. Bokuniewics (2006) – The Hudson River Valley: Geological History, Landforms and Resources Wikipedia (http://en. wikipedia. org/w/index. php? title=Hudson_Canyon&oldid=453958227) – Hudson Canyon Data SIO, NOAA, U. S.Navy NGA, GEBCO (2010)  œ Google Earthâ„ ¢ United States Geological Survey (USGS) (2004) – Sea Floor Topography & Backscatter Intensity of the Hudson Canyon Region Offshore of New York & New Jersey (http://pubs. usgs. gov/of/2004/1441/html/interp. html) Phil Stoffer & Paula Messina (2008) – Introduction to the Geologic History of the New York Bight (http://www. geo. hunter. cuny. edu/bight/Geology. html) Phil Stoffer & Paula Messina (2008) – The Highlands Region (http://www. geo. hunter. cuny. edu/bight/highland. html) R. G.Wilkins Booth (1970) – The Ontario Water resources commission Geology of the upper part of the Severn River basin and the Severn River basin lying within the Hudson River Lowlands. Steven H. Sehimmrich – Geology of the Hudson Highlands Region (www. environmentalconsortium. org) Access Genealogy – Geology of the Hudson (http://www. accessgenealogy. com/newyork/hudson/geology_hudson. html) Charles Merguerian (2010) – Geology 133 Field Tr ip 18 | P a g e Dick Goodman (2013) – Geologist in California, gave much information and advice on this project United States Navy Geological Services (2013) – Maps, Graphs Bradford B.Van Diver (1985) – Roadside Geology of New York John F. Shupe (1996) – National Geographic Atlas of the World Revised sixth edition Kevin Hile (2009) – The Big Book of Answers Tom Lewis (2005) – The Hudson: A History Maps 19 | P a g e The maps presented here on the next couple of pages are all ones used in this essay as reference. They are from many different sources and show many of the things I talked about, visually. Hudson Canyon 20 | P a g e 21 | P a g e 22 | P a g e Geographical Diagrams 23 | P a g e 24 | P a g e 25 | P a g e

Sunday, September 29, 2019

Bis Case Study

Chapter 8 / Enterprise Business Systems ? 259 REAL WORLD CASE 2 Agilent Technologies and Russ Berrie: Challenges of Implementing ERP Systems Co. (www. russberrie. com) was taking another crack at replacing its legacy business systems. The Oakland, New Jersey–based distributor of toys and gifts ? nalized plans to roll out J. D. Edwards & Co. ’s OneWorld Xe suite of enterprise resource planning (ERP), customer relationship management, and ? nancial applications. The multimillion-dollar project was scheduled to be done in phases over the next 18 months.Russ Berrie CIO Michael Saunders said that the company, which had sales of $225 million during the ? rst nine months of 2001, hoped the OneWorld System would help it reach $1 billion in annual revenue in the coming years. Within the next 12 months, he said, Russ Berrie planned to begin installing the applications one department at a time, starting with a stand-alone implementation in purchasing. â€Å"We’re not going big bang,† Saunders said. â€Å"We’re mitigating implementation risks by taking a phased-in approach. The company had reason to be cautious. Three years before, a Y2K-related migration from its homegrown distribution, ? nancial, and customer service systems to packaged ERP applications experienced major system failures. Saunders said the problems were severe enough for Russ Berrie to take many of the new applications off-line and return to their old systems. Saunders wouldn’t identify the software vendors that were involved in the failed implementation, but sources said that SAP AG’s applications were part of the 1999 project.A spokesman at SAP con? rmed that Russ Berrie was one of its customers, but he declined to offer further details because of pending litigation between the two companies. Joshua Greenbaum of Enterprise Applications Consulting said it appeared that Russ Berrie â€Å"bit off more than they could chew† on the 1999 project. Compan ywide rollouts are especially risky for midsize businesses like Russ Berrie, Greenbaum said. T he good news is that Agilent Technologies Inc. (www. agilent. com) says its enterprise resource planning applications are stable.The bad news is they got that way only after a rocky ERP migration project that cost the company $105 million in revenue and $70 million in pro? ts. In mid-August 2002, the multinational communications and life sciences company, formerly a part of HewlettPackard Co. , said problems with the ERP components in Oracle’s e-Business Suite 11e software froze production for the equivalent of a week, leading to the massive losses. The Oracle system handles about half of the company’s worldwide production of test, measurement, and monitoring products and almost all of its ? ancial operations, as well as functions such as order handling and shipping. Agilent was in the process of migrating as many as 2,200 legacy applications that it inherited from HP to Orac le. As part of the switchover, approximately 6,000 orders in the internally developed legacy systems had to be converted to an Oracle-friendly format, an Agilent spokeswoman said from company headquarters in Palo Alto, California. She said the con? guration process had problems requiring correction.In a statement last week, Agilent President and CEO Ned Barnholt said the disruptions to the business after implementing the ERP system were â€Å"more extensive than we expected. † An Agilent spokeswoman said the issue wasn’t the quality of the Oracle application, but rather the â€Å"very complex nature of the enterprise resource planning implementation. † For its part, Oracle Corp. said it’s working closely with Agilent. â€Å"At Oracle, we are fully committed to all of our customers for the long haul and support them in any way necessary,† the company said in a statement. We have a strong relationship with Agilent, and both companies believe the impl ementation is stable. † Agilent also had a takeaway lesson: â€Å"Enterprise resource planning implementations are a lot more than software packages,† the company said in a statement. â€Å"They are a fundamental transformation of a company’s business processes. People, processes, policies, the company’s culture are all factors that should be taken into consideration when implementing a major enterprise system. † According to one analyst, ERP disasters are often caused by the user company itself.Joshua Greenbaum, an analyst at Enterprise Applications Consulting, said 99 percent of such rollout ? ascoes are caused by â€Å"management’s inability to spec out their own requirements and the implementer’s inability to implement those specs. † Russ Berrie and Co. After a three-year saga that included a $10. 3 million ? nancial hit from the failed installation of packaged applications, teddy bear maker Russ Berrie and Case Study Questi ons 1. What are the main reasons companies experience failures in implementing ERP systems? 2.What are several key things companies should do to avoid ERP systems failures? Explain the reasons for your proposals. 3. Why do you think ERP systems in particular are often cited as examples of failures in IT systems development, implementation, or management? Source: Adapted from Marc Songini, â€Å"ERP Effort Sinks Agilent Revenue,† Computerworld, August 26, 2002, pp. 1, 12; and Marc Songini, â€Å"Teddy Bear Maker Prepares for Second Attempt at ERP Rollout,† Computerworld, February 4, 2002, p. 16. Reprinted with permission from Computerworld.

Friday, September 27, 2019

Mechanical cavopulmonary assist device cage for Fontan patients Research Paper

Mechanical cavopulmonary assist device cage for Fontan patients - Research Paper Example Smaller size of the filaments limits the structural support ability of the protective cage while large sizes of the filaments decreases the hydrodynamic properties of the design while increasing the pressure. The size of the filament thickness is however subject to change based on computational test results. The number of filaments is proposed to be five, not the same as the number of impeller blades, in order to shun resonance and vibration of the system. The protective cage offers protection to the vessel from the rotating components through its radial arrangements of the filaments. The elliptical design of the protective cage of filaments not only presents hydrodynamic characteristics but also provides space efficiency. The angle designs of the blades helps in space conservation given that a number of the blades can be fitted within the pump for maximum functionality. This helps in minimizing the size of the pump to ensure it properly fits within the blood vessel. The pump is characterised with diffuser blades, which are located on the protective filament cage. A shift in the flow directionality aids the diffuser blades to convert the rotational force produced by the impellor to potential energy. A motor-magnetic bearing suspension is used to induce the pump rotation. The proposed design will aim to achieve this through the levitation and rotation of the impellor within the protective filament cage (Throckmorton et al., 2010). The protective cage of filaments is designed with five elliptically shaped filaments. The proposal aims at modifying the design to serve both protective and design functions at the same time. The shape of the protective cage filaments serves significant role in stabilizing the impeller blades radially and axially in addition to acting as a barrier in the protection of the vessel from the rotating impeller blades. The unique elliptical design shape of the filaments plays a vital role in maximizing energy production from impeller while

Compare and contrast the views of authorities as part of building an Essay

Compare and contrast the views of authorities as part of building an analysis of the work of postmodern practitioners - Essay Example The main idea behind ‘postmodernism’ is that it criticizes the basic notions of modernism. Lyon’s (1999) study shows that postmodernism was a movement which was aimed at the rejection of the concepts, introduced in the Modernist era. Postmodernist works were different from the Modernist ones in many ways. According to Smart (1993), postmodernist works included mostly ironic comments on modernism. This was done through applied decoration. The modernists had previously based a lot of their works on science and rationality was something that was very essential to them. For the post modernists, however, the rational was something that was quite dehumanizing. Postmodernism sought ideas that could not be explained by the realm of science and rationality. Modernism had also focused mainly on the universality of things. According to Smart (1993), postmodernism, as a resistance to this notion, concentrated more on the individuality of people. Creative expression and individualistic ideas were preferred and favored over universalistic ones. It was an approach that was quite different because people were judged due to their own capabilities. Postmodernists also had a keen interest in the rejection of the traditional norms that had been prevalent after the modernist Era. For example, through their works, the postmodernists criticized the generally held concepts of beauty and taste as Sparke (2004) relates. Rather than considering beauty of a person they judged people by their talents. Further, Postmodernists focused on the use of different materials and new mediums so to increase diversity. Now that the paper has given a brief overview of the postmodernist era, it is important to consider the works of two postmodernist practitioners, namely Robert Venturi and Charles Jencks. First the paper discusses the works of Robert Venturi. Robert Venturi was an American postmodern

Thursday, September 26, 2019

The legalization of marijuana in the United States Research Paper

The legalization of marijuana in the United States - Research Paper Example However, there is also a giant percentage of public which believes that criminalization of marijuana possession has always been a defeated objective. It is a kind of government objective which has consumed a lot of manpower and valuable limited resources. However still, the government is nowhere close to discouraging the public from smoking marijuana. Basically, this research paper seeks to argue that cannabis should be legalized or decriminalized in the US. The paper will present and explicate multiple reasons to augment the argument that marijuana is a drug with a variety of uses and minor risks. To validate the argument, marijuana will also be compared with alcohol and tobacco as a way of demonstrating how marijuana is so much less detrimental than the latter substances and still looked down upon by the government with such intensity, which is absolutely unjustified. War on drugs, particularly marijuana, is a complete failure. It has consumed trillions of dollars to date and continues to exert more financial pressure on the American government with every passing day. Prohibition on this drug has affected society very badly because more people are reported or jailed for minor drug offenses and people have to go to extreme measures to get this drug. Many such measures often affect their self-esteem in a very bad way given the circumstances and the places they have to bear to get the drug discreetly. Research also claims that the main reason marijuana often affects users’ lives negatively is not because of the drug really, but â€Å"because of the consequences attached with using the drug† (Pitts cited in Millat). Research shows that the US government has wasted a lot of money to keep marijuana from reaching the market in the past. According to an estimate, the US government suffers a total cost of about $10 billion on an annual basis in myriad efforts to make the country free of this drug. On the other hand, the State of California produces

Wednesday, September 25, 2019

Literacture review Essay Example | Topics and Well Written Essays - 1500 words

Literacture review - Essay Example However, critics have noted that, it is only by allowing ethnicity to thrive and be respected, that some measure of equality can be achieved – since it is difficult for people to completely separate themselves from their ethnic roots and take to a foreign culture (Salvidar 27). Furthermore, Rodriguez links his views of the Affirmative Action Program to a critique of bilingual education, claiming that â€Å"all children must abandon the[ir] language of origin in order to enter public society.† (Rodriguez 27). In this essay I will firstly outline the difficulties of integration faced by ethnic minority groups, in addition to taking into account the complexities of learning English as a second language. Secondly I will consider Rodriguez’s justification for assimilation, before assessing critiques of his work, which simultaneously serve to support the rationale on which approaches to combat racial discrimination, such as the Affirmative Action Program, are based. As a Korean bilingual student, learning English as a second language, to me Rodriguez’s views appear unrealistic and impractical for everyone to achieve. The difficulties that second language students face in learning English are a function of the differences in their own native tongues. There may be three major aspects that affect a student’s ability to learn English : (a) their low level of understanding and self esteem, (b) the different systems of sounds in different languages and (c) differences in grammar. When a student has continuously spoken and studied one language before trying to learn English, the native language tends to interfere with the learning of English. However, this cannot form the basis for completely rejecting the native tongue and bilingual education, as Rodriguez suggests. Instead, there may be a need to reform teaching and learning methods. Similarly, when taking into account the Affirmative Action

Tuesday, September 24, 2019

Patient education Assignment Example | Topics and Well Written Essays - 750 words

Patient education - Assignment Example Nurses have significant roles in educating the public on the five components as needed by the agreement on stroke presentation measures. They include lifestyle risk factors of the disease, signs and symptoms and how to access emergency medical services, medications, stroke prevention and follow-up. Furthermore, they can embrace educational techniques to address the modification of the five educational components after a patient has recovered from a stroke. There is no single perfect teaching method than the other for all patients suffering from stroke. Whichever technique is selected, it will normally be the most operational if it is applied with other instructional methods to improve the process of learning. The decisions on what approaches will be applied will be centered on aspects such as the teaching setting, ideal learning style, educational background, age, culture, size and audience. Common approaches applied to provide educational interventions are simulation and gaming, dem onstrations and return demonstrations, lecture, private teaching, group discussions and lectures (Hauer & Quill, 2011). Nevertheless, lively teaching involving multidisciplinary health care practitioners (HCP), family members and stroke patients interactively are more beneficial instead of passive education. Lecture is a greatly structured approach through which HCP’s or nurses transmit information verbally to stroke patients in a group with the aim of instructing them. Audio-visual assistances can be through drafted materials like a pamphlet or booklet in an acoustic form like audio compact disk or visual compact disk. However, teaching approach is not so much effective in teaching the stroke patients because it does not sustain much inspiration for patients with stroke and restricted chance for learner involvement. Additionally, the audio-visual is ineffective as the patients can sleep off while watching. It is recommended to complement this

Monday, September 23, 2019

Ford Motors and Its Leadership Term Paper Example | Topics and Well Written Essays - 1250 words

Ford Motors and Its Leadership - Term Paper Example The term paper "Ford Motors and Its Leadership" talks about the productive efficiency that makes an organization successful and also the leadership style that directs the organization towards a unified organization goal. Henry Ford introduced a structure whereby employees and workers were only responsible for the tasks in their job description and the decision making was highly centralized: only the top management could do that. Though Ford’s production line was perfect, it only made sales in the USA and Canada in1999. Jacques Nasser, Ford’s CEO in 1999 believed that there was an urgent need to relax the rigid and slow structure and he recommended ‘nimble leaders at all levels’, in order to speed up decision making. Only when lower level employees were allowed to make decisions, they could feel confident and trusted. This improves efficiency and performance of the overall workforce. Ford’s present ideology is that to start a revolution, one has to train revolutionaries. This was not the case back in 1999. To develop leaders, Ford sent around 2500 of its managers to Leadership Development Center. These programs were not only aimed at defining good leaders but they also taught the skills and strategies to become good leaders. At Ford’s New Business Leader Program, Janine Bay retorted: "How many of you feel comfortable being here? About half. Okay. Well, I hope to change that this week. I want all of you to be uncomfortable. Because if you're comfortable, you can't re ally be a revolutionary, can you?" (Hammonds, 2000). Only when managers work outside their comfort zones, they can learn different new tasks and bring about innovations and revolutions. Leadership at grass root level made Ford a more nimble entity. It instills risk taking ability at lower levels of the hierarchy. If employees at grass root wait for instructions from the top management, there can be hold ups in the whole production process. Ford encourages leaders to be teachers because it makes them stronger and insightful leaders. Teaching transforms managers into leaders who can strike a balance between work and family (Hammonds, 2000). In 2009, General Motors and Chrysler filed for bankruptcy and agreed to government bailout. The year 2008 was the worst period for Ford as it incurred a loss of $14.6 billion in sales. It had made $24 billion which was less than the $25.8 billion debt. In spite of this blow, Ford turned down government help because it wanted to save it for times wh en the economy worsened to the greatest extent. Ford also experienced declining sales the following year: and its sales in February 2009 were 48% lower than its sales in February of 2008. But Fords did not follow the footsteps of General Motors or Chrysler. The crisis that it faced did not shake its integrity as an organization. It stood strong in times of economic trouble and refused government loans in order to bounce back. The reason why Ford survived even after refusing a government bailout was that in 2007, Ford had raised $23.6 billion by getting loans against its North American assets (that served as collateral). The idea as per the then chief executive Alan R. Mulally was that this loaned money will protect Ford’s in times of recession. Unlike Chrysler and General Motors, Ford’s was protected in recession by this loaned money. Planning for contingencies by its top management gave Ford the security and stability it needed in recessionary period. In 2009, Ford tu rned out to be the only automaker survivor, when most automakers filed for bankrup

Sunday, September 22, 2019

Chester Company Essay Example for Free

Chester Company Essay A unique and interesting problem arose when one company, a monopoly within the business-to-business (B2B) sensor market, split into six companies with identical products and equal footing within the market. As Director of Finance for Chester Company, one of the newly formed entities, it is important for me to identify a strategy that will enable the company to remain viable and be successful in the future. An in-depth analysis of the industry situation report provided good metrics to project future customer desires and total market potential. In order to be successful, the strategy that the management team develops must work within the identified parameters while attempting to predict how the other five companies in the B2B sensor market will proceed. There are only two segments of the B2B sensor market: low technology and high technology. The only product Chester Company offers currently fulfills the needs of both markets but this will change as the newly formed entities revise and develop products to meet customer needs. The high tech segment is appealing but will require continual investment in research and development to maintain the standards that customers expect. It will be easier to meet the needs of the customers within the low tech segment but there will likely be more competition for market share. 1. The strategy that I would like to see the management of Chester Company adopt over the next five years is that of â€Å"niche cost leader† (Capsim Management Simulations, 2012) for the low technology segment of the B2B sensor market and to obtain thirty-five percent of that market. This will be achieved by appealing to customers’ sense of thrift. To cut prices below the competition, management should retain the current product and not invest much in research and development. Production costs must also be greatly reduced. To do this, an early investment in automation is necessary as it will reduce labor expenses in future years which will increase the margin and profitability of the company. This investment will be financed through the issuance of stock and long term bonds. I also plan to provide the marketing department with a very generous budget in the first couple of years to aggressively target the market and increase the awareness and accessibility of the product early on. Short term borrowing will be necessary to finance operations and provide a cash cushion to prevent the need for an emergency loan. 2. There is a great chance for Chester Company to earn good profits within the low tech segment over the next five years. Although the price of the product must be kept to a minimum this will be offset by decreasing costs which increases the contribution margin. Also, there is greater demand for products in the low technology segment of the B2B sensor market which is expected to increase approximately ten percent each year. However, Chester Company shareholders may realize a loss in the first year due to the high marketing budget and cost of labor because the automation rating is low. Unfortunately, some sacrifices will need to be made early on to realize greater profits in the long term. 3. The product that is most important to the success of Chester Company is Cake; the product currently being produced. During the first year of business, this product will have the ability to appeal to customers across both segments of the B2B sensor market and will ultimately become the favored product of the low tech segment. Management will take advantage of the dual appeal of Cake in the first year by taking a portion of both the low tech and high tech markets in an attempt to retain some profitability. Ultimately, the product will be positioned so that it takes a large portion of the low tech market and will likely not take any portion of the high tech market by the fifth year. The plan that I developed focuses primarily on the success of the company for the next five years as there will be a lot of volatility in the market and further projections are impossible to make at this time. It is difficult to predict how the competitors within the B2B sensor market will be positioned which makes it essential for management to decrease costs as much as possible and increase market share within the low technology segment of the market. My advice to the rest of the management team is to avoid the appeal of developing a new product for either market early on and to avoid the high tech market altogether within the first five years because it will be difficult enough to remain profitable and succeed without squandering business assets on developing a product which will have little chance of being profitable within that timeframe.

Saturday, September 21, 2019

Educational Philosophy Essay Example for Free

Educational Philosophy Essay Human nature is the product of ones environment. Change the environment to change the behavior. Reinforce good behavior, punish bad behavior Conservation of cultural heritage preserves the wisdom of the achievements of humankind. Behavior evolves within the conditioning influence of the institutional system, tradition is the repository of a collective social intelligence. Constructivism is an educational methodology which asserts that learners should be taught in a way that allows them to construct their own understandings about a subject. The purpose of the teacher is not to cover material but to help the child uncover the facts and ideas in a subject area. Essentialists believe that children should learn traditional basic subjects. (Reading, Writing, Literature, Foreign Languages, History, Math, Science, Art, and Music. ) Generally teaches children progressively, from less complex skills to more complex. Schools should transmit the traditional moral values and intellectual knowledge that students need to become model citizens. Focus is on basic skills. Existentialism rejects the existence of any source of objective, authoritative truth about metaphysics, epistemology, and ethics. Do not accept any predetermined creed or philosophical system and from that try to define who we are. Aim for the progressing of humanity. Use independent thinking. It engages the student in central questions of defiming life and who we are. Answers imposed from the outside may not be real answers. The only real answers are the ones that come from inside each person, that are authentically his or her own. For the existentialist, there exists no universal form of human nature; each of us has the free will to develop as we see fit. â€Å"Stimulate learners to achieve a more vital and fuller identification with the Absolute Mind or the Macrocosm Students come into a gradually expanding mental awareness that leads to self-definition based on a comprehensive understanding or perspective of the universe. † (Gutek, p21) Liberalism focuses on the individual. Ideas come from experience. Sensation and reflection create learning. Behavior Modification Conserve/preserve heritage. Constructivism Essentialism Willaim C. Bagley Arthur Bestor Existentialism Idealism Plato Liberalism John Locke Marxism Karl Marx Marxism promotes socialism, as opposed to capitalism where one class oppresses another. Education is use d to change society. Naturalism Rousseau The child should develop in the natural way s/he is designed, guiding the process Perennialism Perennialism Robert M. Hutchins Perennialists believe that one should teach the things of everlasting importance to all people everywhere. They believe that the most important topics develop a person. Philosophy is improtant to study. Studens should learn principles, not facts, teach scientific reasoning, not facts. Teach first about humans, not machines or techniques.. Perennialism focuses first on personal development. Prepared for ED828 Educational Philosophies and Change Jean Marrapodi †¢ Capella University †¢ September 2003 Construct new ideas Back to the Basics What is real? Striving for the ideal Blank slate of individual experience All for all Natural development of the child Like perennial flowers, great principles repeat Educational Philosophies. Philosophy Pragmatism Philosophers Beliefs Key Thought John Dewey Scientific problem solving, experiential learning Progressivism William Kilpatrick Realism Aristotle â€Å"Ideas were to be judged by their consequences when acted on; truth was a warranted assertion, a tentative statement based on the application of hypotheses to solving problems; logic, following the scientific method was experimental; values were experienced within the context of ethical and aesthetic problems and issues charged by the unique features of particular situations. † Gutek, p 77. Progressivists believe that education must be based on the fact that humans are social animals who learn best in real-life activities with other people. Teachers provide not just reading and drill, but also real-world experiences and activities that center around the real life of the students. Discovery follows the scientific method: 1. Become aware of the problem. 2. Define the problem. 3. Propose hypotheses to solve it. 4. Test the consequences of the hypotheses from ones past experience. 5. Test the most likely solution. â€Å"Cultivate human rationality, the human’s highest power, through the study of organized bodies of knowledge†¦encourage human beings to define themselves by framing their choices rationally, to realize themselves by exercising their potentiality for excellence to the fullest, and to integrate themselves by ordering the various roles and claims of life according to a rational an hierarchical order. † Gutek, p 41 Education should examine, define the problems and change the social structure of society. Rebuilding Society George S. Counts Social Reconstructionism. Learn by Doing! Rationally real Theistic Realism Thomas Aquinas Similar to realism, but God is central God in the core Totalitarianism Adolph Hitler Totalitarianism is a political system in which a citizen is totally subject to state authority in all aspects of day-to-day life. Government controls education. Total dependence on government Utopianism Robert Owen A perfect society can be achieved through the education of the young. Perfect society through education Prepared for ED828 Educational Philosophies and Change Jean Marrapodi †¢ Capella University †¢ September 2003.

Friday, September 20, 2019

Impact of VoIP on the Future of Telephony

Impact of VoIP on the Future of Telephony With the dawning of a new age of pervasive computing, there is a greater requirement for the exchange of data to be made possible between computing assets that are connected to a network. Interactions require an exchange of various multimedia formats as well as the provision of enhanced services including instant messaging and presence management. There is, therefore, a need for a converged network that is capable of carrying both voice and multimedia in digitised form. Single network that is capable of carrying both voice and multimedia is preferable to having more than one networks because such a network is vastly more economical. Packet networks that use the internet protocol have emerged as a solution for this requirement. These networks are capable of carrying all forms of data as well as voice over the internet protocol in real time. The networks use the internet protocol to provide a universal connectivity that was not previously possible. Despite the earlier problems involving latency, quality of service and reliability in the establishment of connections, VoIP or Voiceover the Internet Protocol has come to be accepted as a matured technology. The proliferation of this technology is steadily increasing because of the economic considerations associated with its use as well as the futuristic services that are capable of being provided on I networks. It has been estimated that by the year 2015, VoIP will have captured about 50% of the global market share for telephony. VoIP has, therefore, proven to be a killer application for switched telephone networks and its advent has unleashed an unprecedented level of competition at all levels in the telecommunications industry. This dissertation takes a look at the impact of the VoIP technology on the future of telephony. 1.1 Introduction Switched telephony networks have been responsible for carrying most of the world’s voice communications over the past decades, but with the advent of the relatively new communication technologies, there is likely to be a change towards a greater use of the telecommunications networks that carry voice as well as other information. The switched telephone networks and equipment were designed as fixed communications channels for bi-directional speech. In the old public switched network, a call that is initiated by a user establishes a connection between two users and once the connection has been established, no one else could use the connection. Terminating the call frees the line for other users who can then initiate another call. With the evolution of computers, modems were used to modulate data streams over the voice telephony channels and over time, better modulation schemes were developed that resulted in higher data transmission rates. Developments in computing and multimedia have created a demand for new kinds of services and the telecommunications infrastructure that is in use is expected to satisfy this demand. The development of internet and computer data networks along with the evolution of the Internet Protocol or the IP meant that it is now possible to send packets of data over the network. Voice can now be digitized after the speech signal is acquired from a microphone, encapsulated into packets and sent over the networks using the internet protocol. On the receiving side, these packets are de-encapsulated, processed and played over the speaker to present the information to the listener. This method of transporting voice over the internet protocols called the voice over internet protocol or VoIP. It is also possible to send video and data from other shared applications to destinations using the internet protocol. A codec is used to encode and decode speech, audio and video over the IP network and there is no need to reserve a connection between parties to the call. Signalling is, however, required to create and manage calls. Personal mobility, desire to communicate and availability can make the task of the required network signalling a complex one. There are several standards which have been developed for signalling over the new IP networks. The Session Initiation Protocol or the SIP which was developed by the Internet Engineering Task Force or the IETF manages the creation of a call as distinct from the ringers and switches in a switched network. For a more generalised exchange of data including video conferencing over the IP, the H.323 standard has been developed by the International Telecommunication Union, ITU for the management of network connections and the associated tasks of bandwidth allocation etc. There has been growing acceptance of VoIP all over the world and a growing number of users including businesses, especially call centres, as well as network service providers have started to use this technology. A lower cost forth user is associated with the use of VoIP and this is the major factor in presenting a business case for the use of VoIP, along with the ability to send multimedia over a telecommunications link. IP makes more efficient use of the bandwidth that is available and inflated cross border tariffs are avoided. Tariffs and regulations associated with VoIP telephony are, however, in a flux and it is difficult to predict how VoIP will be affected as a result of a possible implementation of new internet access charges. Adding a new media type on IP requires no change to the network infrastructure and the initiation of multiparty calls is only slightly different from a two-party call. IP also makes it possible to develop novel telecommunication devices and it is now possible for the world to progress beyond the simple voice telephone to the IP’s more exciting applications. It is possible to use the public telephone network PSTN /IP Gateway Interoperability standard to feed IP encoded voice messages over the telephone network. This protocol coupled with the Resource Reservation Protocol, RSVP, makes it possible for an application to have a certain amount of bandwidth allocated with a maximum delay which assists in the implementation of a VoIP connection. Developments in new multimedia technologies has meant that there are two types of telecommunications networks which are in existence today, the old switched PSTN network with its reliability and quality along with the new packet based networks with cost efficiencies and an ability to provide the new types of services. Although VoIP technology is developing and gaining a much wider acceptance, it is has not been without its problems. Because it is not possible to guarantee the arrival time of the data packets which have been sent over a packet network, there were problems with the voice quality when using VoIP. These problems could, however, be solved by using private networks and more internet bandwidth. Although VoIP does not use a large chunk of the internet bandwidth that is available, other applications that are running may result in a deterioration of the voice quality. Hence, it was important to carefully consider how the internet connection was to be utilized and what bandwidth was required to be purchased. The security of VoIP communications was also considered to be a problem and it was thought that there was a need to compress voice and enhance security by using commercially available encryption products. The added latency or delay in voice communications was, however, considered to be unacceptable. The best and the latest encryption devices are restricted items and their export is prohibited under United States Export regulations. There were, therefore, problems associated with implementing VoIP using either hardware or software and better quality of service or Qi’s was only possible with dedicated hardware. Although VoIP can hide costs associated with communications from the consumers, these costs could be returned in the form of service fees. There was a need for call service capability to be brought to packet switching and the Qi’s had to be controlled to fall within acceptable limits. One of the important challenges of VoIP waste construct a converged VoIP and PSTN network that will permit VoIP and PSTN connectivity, with calls originating from one network and terminating into the other network. The SIP protocol which establishes the call in VoIP uses multiple messages with multiple parameters to initiate a call session and this protocol could fail because messages were not transmitted in the proper order with proper parameters and configuration. A miss-configured user proxy address for the user can result in host unreachable messages being presented to the client. The Internet Control Message Protocol and the INVITE messages which are a part of the SIP protocol could be dropped when attempting to conduct a session using VoIP due to traffic, resulting in there being no connection to the remote system. SIP did not work well when tried from behind firewalls. Hence, with VoIP, call traffic becomes data traffic and this traffic is exposed to threats related to confidentiality, availability and integrity. Hence, care needed to be taken when implementing VoIP in organisations, to provide for good design to prevent cost overruns, misalignment with strategic objectives and inadequate benefit realisation. IP networks must be able to meet strict performance criteria and perform for real time traffic. Packets travelling on a network will pass through a heterogeneous network with varying quality of service and bandwidth, but a reasonably good end-to-end quality of service is expected for voice communications. Signalling or the passing of messages for correct call setup, progress and termination is also important on the network. Hence, the implementation of VoIP was associated with the solution of important technical problems. Despite the above problems that have been improved upon, VoIP today can match the features that were available in the legacy PBX systems and infect provide an enhanced set of features. The Internet today is an essential business tool and Internet connections are considered to be essential fixtures for any business premises. VoIP telephony systems have been designed to utilise the advantages of IP telephony in order to present a flexible communications infrastructure which businesses can use in order to simplify the business process and enhance productivity. Many manufacturers of legacy telephony products have also accepted that IP telephony is the future and that the technology provides better communications equipment with enhanced features. VoIP has been showing a far greater level of proliferation in business organisations than ever before. Market reports have indicated that there is an increasing trend towards the full deployment of VoIP rather than its mere implementation. Because there is an increased level of satisfaction and familiarity with VoIP technology, converged networks that blend VoIP and other technologies are considered to be more strategic in nature rather than the traditional voice and data networks. Security at the network infrastructure level is considered tube more important than voice security, with the level of satisfaction associated with the technology remaining about the same. The new networks, which have new equipment that is in demand in the market includes IP PBXs or IP enabled traditional PBXs, Voice Enabled Routers,IP Phones, IP Centrex’s and Soft Phones etc. The new technology has changed the network components and the nature of the equipment that has been associated with telephony. IP PBXs indicated a 15% growth rate while IP Centrex indicated a 54% growth rate in usage from previous years according to market reports. A Centrex is essentially a scaled down PBX with features that are supported by the service provider. Adoption of IP telephony presents advantages related to an enhanced and converged business process as well as advantages related to costs of adoption or changes. It is easier to deploy new integrated applications which may benefit the enterprise. Costs of calls within an organisation, between different sites are substantially reduced and enhanced features become available. Other advantages that result from the adoption of IP telephony include reduced staff costs, lowered costs associated with wiring, lower international call charges as well as reduced costs associated with the upgrading and maintenance of telephony equipment, including the PBX. Because VoIP is a more complex and sophisticated technology as compared to the legacy telephony networks, instrumentation systems that are required for troubleshooting and managing VoIP have been cited as a barrier to its implementation. It has also been claimed that there is a shortage of trained people forth design and maintenance of VoIP networks. Because VoIP networks are so very different from the legacy telephone networks, substantial investments can be required to implement large projects, even though financial instruments are available to sustain a growth in the adoption of VoIP. Sophisticated upgrade of the legacy networks involving the purchase of new network equipment, servers, IP phones, management software and diagnostic tools may be involved to acquire a network with acceptable levels of latency, jitter and the number of lost packets. VoIP Architecture An obvious question that arises with regard to VoIP telephony is how it’s different from the legacy telephone networks? In the legacy telephony networks, voice communications had been handled by the proprietary PBX platforms providing circuit connection and circuit switched calling features such as call transfer and hold along with voice applications such as call accounting, voice mail and automated call distribution. The PBX ensured that savings were made by avoiding having to provide a line to each telephony user for connection to the organisation’s central office. The PBX acted like a small central office with switching being made possible to users as required over a number of shared external telephone lines. The number of external telephone lines that were needed depended on the number of users that had to be connected to the PBX and the expected telephone traffic into the connection in elands. The PBX which could be considered to have the telephony switching intelligence was connected to the dumb telephone terminals or the telephones which merely passed digital keystrokes to the PBX for switching and voice application related decisions to be made. PBX systems in switched telephony can be networked together, but such efforts are likely to be expensive. It was most likely that key telephone systems could not network with other key telephone systems and peripheral devices such as a Centrex could not interconnect with a PBX or another system. Hence, the legacy telephone systems were plagued with connectivity problems along with being expensive. The IP telephone system changed all this by adopting the router instead of the PBX as the distributor of traffic on the all data packet network. The routers connect not just one network together, but hundreds of thousands of networks, with the essential function of arouser being the diversion of packet data traffic to the appropriate devices on the network, with the correct IP addresses. Hence, while thebe in the legacy system used to divert voice traffic to telephone numbers, the router diverts data packets of various kinds including voice, multimedia or video etc. to the data network equivalent of telephone number or an IP address. Interconnection problems are minimised because there is a standard IP protocol which is used to transport packets over the IP network and all IP protocol compatible devices may be interfaced with each other. The IP protocol is able to connect equipment manufactured by many different vendors over different types of media such as the twisted pair, coaxial or other data links such as the Ethernet or Token Ring and even the wireless connections. The packets are transported in a reliable manner with the IP protocol running on devices ranging from PCs to mainframes. IP is everywhere and it carries packet traffic faithfully from anyone sending this traffic to anyone who is required to receive it. There is, therefore, a global standard that is understood anywhere in the world and unprecedented connectivity is made possible for all kinds of devices. Amongst the other advantages of VoIP include provision of directory services over the telephone by which it is possible for ordinary telephones to be enhanced in order to act as internet access devices, availability offender office trunks for inter office communications, ability to access the office from a remote area such as the home and the ability to interact with the large number of customers who may want to make enquiries after having visited the corporate web site through IP based call centres. Fax over IP is also made available through the VoIP connection and it is possible to send fax data that has been converted into packets over long distances without having to deal with problems related to analogue signal quality and machine compatibility. In the present scheme of things, the Integrated Services Digital Network or the ISDN represents the all-digital network that uses single wire to carry both voice and digital network services. ISDN tools an improvement on the old switched telecommunications network and this network too has been improved upon over the years to include new features. The ISDN uses the existing switched network with digital signalling and media transmission being used, which makes it possible for the subscriber to access a number of services through a single access point. A number of different ISDN connections are available, but the most widely and commonly used connection is the basic rate interface or the BRI which consists of two 64 kbps media channels and single signalling or â€Å"delta† channel. Signalling channels are used to establish calls and perform call related signalling which permits theist network to be connected to networks with standard SS signalling. ISDN is the subject of an International Telecommunications Union or ITU specification, the ITU-T recommendation which results in standardisation. However, this network is not as versatile as the packet switched network that has an all-digital approach with no analogue signalling whatsoever and which also has universal connectivity. Switched – circuit networks rely on a fixed routing over the network to establish a connection. However, VoIP networks do not need to follow a fixed routing path and there is an adaptive routing algorithm that is employed to establish the best possible route under varying conditions of traffic. There is, therefore, a decentralized environment and the network is flexible enough to accept the deployment of new applications. Intelligence is important and this can be stored anywhere on the new IP networks. VoIP does not provide a guaranteed quality of service or Qi’s when compared to the PSTN. However, PSTN uses expensive components and resources, whereas VoIP is able to provide connectivity at a reduced cost. It is the VoIP gateway which is responsible for connecting or interfacing the IP network to the rest of the telephony network. Forth gateway, converting the media signal to the required format is only matter of transforming an input signal to an output signal. However, signalling and control translation requires conversion of semantics as well as syntax and there is a requirement for conveying the meaning of signals and control information from one network to the other. Hence, the evolution of VoIP telephony has made it necessary to provide an interface between various telecommunications networks and newer VoIP networks are connected to the older networks by means of interfacing equipment such as the gateways. It can, therefore, be concluded that the emergence of IP telephony and VoIP have significantly changed telephony and it is very likely that the enhanced pace of VoIP adoption that has been witnessed in the business sector will continue to accelerate because of the convenience and cost savings that are offered by the relatively new technology. It’s, therefore, worth investigating how VoIP technology will evolve and how this technology will change the future of telephony. The growth of VoIP has been phenomenal and Gartner estimates that the sale of consumer products for VoIP will grow by more than 40% in the United States in the year 2007. The advantages, disadvantages and the impact of VoIP on telephony are discussed below. 2.1 Products, Services and Issues Related to VoIP In this section, it will be appropriate to discuss how VoIP technology has changed networks and network components and also how telephony services that are available have evolved as a result of the availability of VoIP technology. Products that use the VoIP technology are also discussed. Network devices have evolved and changed as a result of the development of VoIP technology. The telephony switches, ringers and colour coded cables are likely to be replaced by the data network components. The heart of a VoIP phone system is the call processing server which is also known as the IP PBX into which all VoIP control connections are terminated. Call processing servers do not handle the actual VoIP payload, however, conferencing functionality, routing of voice traffic to another call processing server and music on hold features are provided by the call processing servers. The VoIP payload traffic flows in a peer-to-peer fashion from one VoIP terminal to every VoIP terminal. VoIP control traffic, however, flows in a client –server model with VoIP terminals being the clients that communicate with the call processing servers. Call processing servers are usually software based but they may also be implemented as a dedicated appliance or be a part of a router platform and there may be a single server, a cluster of servers or a server farm. This server caters forth signalling mechanism that is required for a VoIP call establishment. Gateways are devices which act as the link between telephone signals and the IP endpoint. The functions that are performed by gateways include the search function, connection function, digitizing function and the demodulation function. The gateway contains directory of the telephone numbers which have an associated Padres and a search is performed by the gateway to convert a dialled telephone number into an IP address upon a call being received to establish a connection. A connection is established between the calling party and a destination gateway through an exchange of information that is related to call setup, option negotiation, compatibility as well as a security handshake. The gatekeeper also digitizes any analogue signals that are received from the incoming trunk into a form that is useful for the gateway. The incoming analogue signals are usually digitized into a 64 Kbps data stream which is pulse code modulated orca. The gateway is, therefore, required to be able to interface to a number of telephone signalling conventions so that the VoIP network can be interfaced to another network when required. Sophisticated gateways can accept both voice and fax signals and the fax signal is usually demodulated into a 2.4 – 14.4 Kbps digital format that is transmitted in the form of IP packets on the VoIP or IP network. A remote gateway-modulates any fax related data into the fax format and this is relayed to the remote fax machine. Gateways on the IP network are connected to gatekeepers, which are LAN endpoints and these gatekeepers perform a discovery on being switched on to find out what IP addresses are connected to the LAN. This discovery information is then passed onto the gateway and the gatekeeper synchronises with the gateways to exchange data traffic if required. A collection of a gatekeeper and its registered endpoints are called a zone. A gatekeeper performs the function of bandwidth management upon receiving a request for bandwidth allocation, translates alias addresses into transport addresses and performs the admission control function to the LAN, based on admission requests and confirms or rejects messages including ARQ / ARC and Arà ªte. The gatekeeper, therefore, acts as a zone manager by performing variety of functions for its zone and the associated gateways as well as other devices in the zone. IP telephones have replaced the conventional telephony sets and the IP phones provide enhanced services suited to VoIP, while retaining the features that were available with the conventional instruments in order to keep the users who were used to the conventional phones comfortable. Soft phones are software packages that may be installed on a PC and the user may use the Platform with an attached microphone for communications on the VoIP channel. The VoIP network may be classified as a logical switch that Isa packet network and it is different from the circuit– switched infrastructure of the legacy networks. Voice and data traffic have to be treated differently and if both types of traffic is to flow on the same network, then there has to be a capability for prioritisation. VoIP networks, unlike the circuit switched networks, can be considered in terms of statistical availability in which priority is given to packets of a specific application with a certain class of service or Qi’s. VoIP traffic is, therefore, given priority over other traffic flowing on the networks in order to ensure that the real time applications related to speech communications are met. Regardless of what type of equipment is being used to receive VoIP packets, there can be a substantial packet loss over the network and this can degrade the quality of speech that is played out on the speaker. To improve the situation a â€Å"jitter buffer† is employed. This jitter buffer is a stack area in memory in which packets are stored prior to being played on the phone’s speaker. The jitter buffer adds to the overall delay that is involved in the VoIP speech transport but it’s necessary to allow for lost packets and to implement error correction schemes. Forward error correction schemes or FEC schemes are employed to check for corrupted packets. In the intra-packet error correction scheme, additional bits of data are added to the packet in order to make it possible for the receiving end to determine if packet has become corrupted. Uncorrupted packets are played out while corrupted packets are rejected. Another scheme that is utilised to cater for packet loss is the extra packet FEC in which additional information is added to each of the packets which makes it possible forth receiving end to extrapolate voice if a packet is lost or becomes corrupted. Hence, unlike the analogue telephony equipment in which only filtering and amplification of the received analogue signals was performed, there is a substantial amount of digital signal processing using microprocessors that is conducted in the VoIP packet based equipment. The error correction and detecting codes can be quite powerful, depending on the computing power that is available and hence the quality of the received voice can be improved. Delay is, however, introduced due to the digital processing of the packets and this can become an annoyance. For delays in excess of 600 Ms, voice communications is impossible while delays of 250 Ms disturb the communication considerably. Delays of 100 Ms do not show up as delays in the conversation and hence there is an upper limit that has to be observed when processing the packets on the VoIP networks. High voice quality on the VoIP channel is bandwidth intensive and atoll telephone quality voice connection can require 64 Kbps data streamer call. However, it is not possible to conduct a call of this quality on the VoIP networks because of the bandwidth limitations. Speech compression is, therefore, used using different compression ended-compression codec’s in order to bring the required data rates to what can be sustained on the VoIP networks. Using codec techniques such as the G. 729 and silence suppression in which the areas of speech in which nothing is said are not converted into packets reduce the bandwidth substantially to about 5 – 6 Kbps for a voice conversation tube possible on the VoIP channel. This is a remarkable achievement of digital signal processing considering that the overheads that are required by the routers on the network can run into about 7 Kbps. Silence suppression techniques can make the listener uncomfortable and to add to the natural flow of conversation, the ambient noise is periodically sampled and regenerated at the receiving end in between the pauses in the active speech so that the listener can feel more comfortable. All the digital signal processing, handshaking and coordination that is going on behind the scenes is transparent to the user of the VoIP channel and the user should be able to use the VoIP instrument naturally as a phone was used. The management interface forth equipment that is in use is able to deal with telephony protocols, dialling plans, compression algorithms, access controls, PSTN fullback features, port interactions and management of the configuration for the instrument that is being used on the VoIP channel. Telephone numbers and IP address need to be handled transparently to the user and personal computers making voice calls will require telephone numbers to make the calls possible. The packets that are sent over the VoIP network are encoded for the UDP/IP protocol instead of the TCP/I protocol so that retransmission of packets is not possible. TCP/IP is, however, a better choice for fax messages so that if packets are lost while attempting to transmit a page, the fax can be terminated. Retransmission of packets is hidden from the fax machine if TCP/I encoding is used for fax messages. The widespread use of the TCP/IP protocol has resulted in a move towards what are known as converged networks. Convergence may be defined as one structure or one network architecture that will end up supporting all kinds of information media on all available network technologies. This means that it should be somehow possible to bring together all kinds of telecommunications technologies and interface them to each other in order to provide universal connectivity and inability to send and receive just about almost anything which may be required to be sent or received. Such universal connectivity has been made possible as a result of the widespread adoption of the IP protocol and this is the glue which binds all networks and applications. Apart from VoIP, the other building blocks of convergence include unified messaging which attempts to integrate all forms of messages, computer and telephony integration which makes it possible to intelligently identify and route calls as well as automatically present information related to the caller, XML which provides a standardised format for data storage and interchange, Voice XML which makes it possible for an application to hear key tones that are encoded in DTMF. SALT, which stands for Speech Application Language Tags make it possible for existing mark-up languages such as XML to access telephony related applications. SIP or the Session Initiation Protocol makes it possible to provide signalling for voice applications on IP as well as making it possible to initiate a voice call from an instant messaging application. Convergence promises to make it possible to interact with computers and other computing devices with intelligence and individuals can interact with others in ways that were never dreamt of before. Mere telephony will cease to exist in the future and will be replaced with capabilities for multimodal integration involving speech, text, pictures and web interactions that can take place through instruments that will replace the simple telephone of the days gone by. It will be possible for organisations and call centres to interact at a much superior level, with those who interact with them and such interactions can involve quick access to